Quark-hadron duality
 in structure functions

Wally Melnitchouk
Jefferson Lab

Outline

■ Introduction / historical context

- Duality in QCD
\rightarrow resonances \& higher twists
- Local duality
\rightarrow truncated moments
\rightarrow insights from models
- Implications for semi-inclusive DIS
- Summary

Quark-hadron duality

Complementarity between quark and hadron descriptions of observables

Can use either set of complete basis states to describe all physical phenomena

Duality in hadron-hadron scattering

Igi (1962), Dolen, Horn, Schmidt (1968)

Duality in electron-hadron scattering

"Bloom-Gilman duality"

\rightarrow finite energy sum rule for $e N$ scattering

$$
\begin{gathered}
\frac{2 M}{Q^{2}} \int_{0}^{\nu_{m}} d \nu \nu W_{2}\left(\nu, Q^{2}\right)=\int_{1}^{\omega_{m}^{\prime}} d \omega^{\prime} \nu W_{2}\left(\omega^{\prime}\right) \\
\text { "hadrons" "quarks" }
\end{gathered}
$$

Duality in electron-hadron scattering

average over

(strongly Q^{2} dependent) resonances
$\approx Q^{2}$ independent scaling function
"Nachtmann" scaling variable

$$
\xi=\frac{2 x}{1+\sqrt{1+4 M^{2} x^{2} / Q^{2}}}
$$

Niculescu et al., PRL 85, 1182 (2000)

Duality in electron-hadron scattering

\rightarrow also exists "locally" in individual resonance regions

Duality in QCD ("global duality")

Duality in QCD

- Operator product expansion

\longrightarrow expand moments of structure functions in powers of $1 / Q^{2}$

$$
\begin{aligned}
M_{n}\left(Q^{2}\right) & =\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \\
& =A_{n}^{(2)}+\frac{A_{n}^{(4)}}{Q^{2}}+\frac{A_{n}^{(6)}}{Q^{4}}+\cdots
\end{aligned}
$$

matrix elements of operators with specific "twist" τ

$$
\tau=\text { dimension }- \text { spin }
$$

Duality in QCD

$$
\tau=2
$$

single quark scattering

$$
\tau>2
$$

$q q$ and $q g$
correlations

$$
\begin{aligned}
& \text { e.g. } \bar{\psi} \gamma_{\mu} \psi \bar{\psi} \gamma_{\nu} \psi \\
& \quad \text { or } \quad \bar{\psi} \widetilde{G}_{\mu \nu} \gamma^{\nu} \psi
\end{aligned}
$$

Duality in QCD

- Operator product expansion
\longrightarrow expand moments of structure functions in powers of $1 / Q^{2}$

$$
\begin{aligned}
M_{n}\left(Q^{2}\right) & =\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \\
& =A_{n}^{(2)}+\frac{A_{n}^{(4)}}{Q^{2}}+\frac{A_{n}^{(6)}}{Q^{4}}+\cdots
\end{aligned}
$$

- If moment \approx independent of Q^{2}
\longrightarrow higher twist terms $A_{n}^{(\tau>2)}$ small

Duality in QCD

- Operator product expansion
\longrightarrow expand moments of structure functions in powers of $1 / Q^{2}$

$$
\begin{aligned}
M_{n}\left(Q^{2}\right) & =\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \\
& =A_{n}^{(2)}+\frac{A_{n}^{(4)}}{Q^{2}}+\frac{A_{n}^{(6)}}{Q^{4}}+\cdots
\end{aligned}
$$

\square Duality \longleftrightarrow suppression of higher twists de Rujula, Georgi, Politzer Ann. Phys. 103, 315 (1975)

Resonances \& higher twists

- Much of recent new data is in resonance region, $W<2 \mathrm{GeV}$
\rightarrow common wisdom: PQCD analysis not valid in resonance region (\rightarrow talks of Owens, Accardi / CTEQX)
\rightarrow in fact: partonic interpretation of moments does include resonance region
- Resonances are an integral part of DIS structure functions!
\rightarrow implicit role of quark-hadron duality

Resonances \& higher twists

relative contribution of resonance region to n-th moment

\Longrightarrow At $Q^{2}=1 \mathrm{GeV}^{2}, \sim \underline{70 \%}$ of lowest moment of F_{2}^{p} comes from $W<2 \mathrm{GeV}$

Resonances \& higher twists

\Rightarrow BUT resonances and DIS continuum conspire to produce only $\sim \underline{10 \%}$ higher twist contribution!

Ji, Unrau, PRD 52, 72 (1995)

Resonances \& higher twists

- total higher twist small at $Q^{2} \sim 1-2 \mathrm{GeV}^{2}$
- on average, nonperturbative interactions between quarks and gluons not dominant at these scales
- suggests strong cancellations between resonances, resulting in dominance of leading twist
- OPE does not tell us why higher twists are small
\rightarrow need more detailed information
(e.g. about individual resonances \& their cancellations) to understand behavior dynamically

Local Duality:

truncated moments

Truncated moments

- complete moments can be studied via twist expansion
\longrightarrow Bloom-Gilman duality has a precise meaning (i.e., duality violation $=$ higher twists)
\square rigorous connection between local duality \& QCD difficult \rightarrow need prescription for how to average over resonances
- truncated moments allow study of restricted regions in x (or W) within PQCD in well-defined, systematic way

$$
\bar{M}_{n}\left(\Delta x, Q^{2}\right)=\int_{\Delta x} d x x^{n-2} F_{2}\left(x, Q^{2}\right)
$$

Truncated moments

\square truncated moments obey DGLAP-like evolution equations, similar to PDFs

$$
\frac{d \bar{M}_{n}\left(\Delta x, Q^{2}\right)}{d \log Q^{2}}=\frac{\alpha_{s}}{2 \pi}\left(P_{(n)}^{\prime} \otimes \bar{M}_{n}\right)\left(\Delta x, Q^{2}\right)
$$

where modified splitting function is

Forte, Magnea, PLB 448, 295 (1999)
Kotlorz, Kotlorz, PLB 644, 284 (2007)

$$
P_{(n)}^{\prime}\left(z, \alpha_{s}\right)=z^{n} P_{N S, S}\left(z, \alpha_{s}\right)
$$

\rightarrow can follow evolution of specific resonance (region) with Q^{2} in pQCD framework!
\rightarrow suitable when complete moments not available

F_{2}^{p} resonance spectrum

how much of this region is leading twist?

Psaker, WM, Christy, Keppel
PRC 78, 025206 (2008)

\longrightarrow higher twists $<10-15 \%$ for $Q^{2}>1 \mathrm{GeV}^{2}$

Local Duality:

 insights from models
Is duality in the proton a coincidence?

- consider model with symmetric nucleon wave function

cat's ears diagram (4-fermion higher twist $\sim 1 / Q^{2}$)

$$
\propto \sum_{i \neq j} e_{i} e_{j} \sim\left(\sum_{i}^{\uparrow} e_{i}\right)^{2}-\sum_{i} e_{i} e_{i}^{2}
$$

■ proton $\mathrm{HT} \sim 1-\left(2 \times \frac{4}{9}+\frac{1}{9}\right)=0$!

- neutron HT $\sim 0-\left(\frac{4}{9}+2 \times \frac{1}{9}\right) \neq 0 \quad \begin{gathered}\text { Brodsky (Hix'oo) } \\ \text { hepphyoooc3il }\end{gathered}$
\Rightarrow need to test duality in proton and neutron!
- How can the square of a sum become the sum of squares?
\longrightarrow in hadronic language, duality is realized by summing over at least one complete set of $\underline{e v e n}$ and $\underline{o d d}$ parity resonances

Close, Isgur, PLB 509, 81 (2001)
\longrightarrow in NR Quark Model, even and odd parity states generalize to $56(L=0)$ and $70(L=1)$ multiplets of spin-flavor $\operatorname{SU}(6)$

- assume magnetic coupling of photon to quarks (better approximation at high Q^{2})
- in this limit Callan-Gross relation valid $F_{2}=2 x F_{1}$
- structure function given by squared sum of transition FFs

$$
F_{1}\left(\nu, \vec{q}^{2}\right) \sim \sum_{R}\left|F_{N \rightarrow R}\left(\vec{q}^{2}\right)\right|^{2} \delta\left(E_{R}-E_{N}-\nu\right)
$$

- How can the square of a sum become the sum of squares?
\longrightarrow in hadronic language, duality is realized by summing over at least one complete set of $\underline{e v e n}$ and odd parity resonances

Close, Isgur, PLB 509, 81 (2001)
\longrightarrow in NR Quark Model, even and odd parity states generalize to $56(L=0)$ and $70(L=1)$ multiplets of spin-flavor $\mathrm{SU}(6)$

representation	${ }^{2} \mathbf{8}\left[\mathbf{5 6}^{+}\right]$	${ }^{4} \mathbf{1 0}\left[\mathbf{5 6}^{+}\right]$	${ }^{2} \mathbf{8}\left[\mathbf{7 0}^{-}\right]$	${ }^{4} \mathbf{8}\left[\mathbf{7 0}^{-}\right]$	${ }^{2} \mathbf{1 0}\left[\mathbf{7 0}^{-}\right]$	Total
F_{1}^{p}	$9 \rho^{2}$	$8 \lambda^{2}$	$9 \rho^{2}$	0	λ^{2}	$18 \rho^{2}+9 \lambda^{2}$
F_{1}^{n}	$(3 \rho+\lambda)^{2} / 4$	$8 \lambda^{2}$	$(3 \rho-\lambda)^{2} / 4$	$4 \lambda^{2}$	λ^{2}	$\left(9 \rho^{2}+27 \lambda^{2}\right) / 2$

$\lambda(\rho)=$ (anti) symmetric component of ground state wfn.

Close, WM, PRC 68, 035210 (2003)
$\square \mathrm{SU}(6)$ limit $\Rightarrow \lambda=\rho$
\longrightarrow relative strengths of $N \rightarrow N^{*}$ transitions:

$$
\begin{array}{|lcccccc|}
\hline S U(6): & {\left[\mathbf{5 6}, \mathbf{0}^{+}\right]^{\mathbf{2}} \mathbf{8}} & {\left[\mathbf{5 6}, \mathbf{0}^{+}\right]^{\mathbf{4}} \mathbf{1 0}} & {\left[\mathbf{7 0}, \mathbf{1}^{-}\right]^{\mathbf{2}} \mathbf{8}} & {\left[\mathbf{7 0}, \mathbf{1}^{-}\right]^{\mathbf{4}} \mathbf{8}} & {\left[\mathbf{7 0}, \mathbf{1}^{-}\right]^{\mathbf{2}} \mathbf{1 0}} & \text { total } \\
\hline F_{1}^{p} & 9 & 8 & 9 & 0 & 1 & 27 \\
F_{1}^{n} & 4 & 8 & 1 & 4 & 1 & 18 \\
\hline
\end{array}
$$

\square summing over all resonances in $\mathbf{5 6}^{+}$and 70^{-}multiplets $\longrightarrow \frac{F_{1}^{n}}{F_{1}^{p}}=\frac{2}{3}$ as in quark-parton model (for $u=2 d$)!

- proton sum saturated by lower-lying resonances
\longrightarrow expect duality to appear earlier for p than n

Close, WM, PRC 68, 035210 (2003)

Comparison with data

- proton data expected to overestimate DIS function in 2nd and 3rd resonance regions (odd parity states)

(\rightarrow talk of Malace)

Comparison with data

\square neutron data predicted to lie below DIS function in 2nd region

\rightarrow "theory": fit to $W>2 \mathrm{GeV}$ data Alekhin et al., 0908.2762 [hep-ph]
\rightarrow locally, violations of duality in resonance regions < 15-20\% (largest in Δ region)
\rightarrow globally, violations $<10 \%$

Malace, Kahn, WM, Keppel
PRL 104, 102001 (2010)
duality is not accidental, but a general feature of resonance-scaling transition!

Duality in Semi-Inclusive Meson Production

- Duality expected to work better for inclusive observables (e.g. structure functions)
- Hypothesis: equivalent descriptions of semi-inclusive meson production afforded by scattering via partons or N^{*} excitations

Afanasev, Carlson, Wahlquist, PRD 62, 074011 (2000)
Hoyer, arXiv:hep-ph/0208190
\rightarrow test hypothesis with models and data
\square Partonic description

$$
\mathcal{N}_{N}^{\pi}(x, z)=e_{u}^{2} u^{N}(x) D_{u}^{\pi}(z)+e_{d}^{2} d^{N}(x) D_{d}^{\pi}(z)
$$

$q \rightarrow \pi$ fragmentation function
$z=E_{\pi} / \nu$ fractional energy carried by pion
\square Hadronic description

$$
\mathcal{N}_{N}^{\pi}(x, z)=\sum_{N_{2}^{*}}\left|\sum_{\substack{N_{1}^{*}}}^{\left.\operatorname{F}_{\gamma N \rightarrow N_{1}^{*}}^{*}\left(Q^{2}, M_{1}^{*}\right) \mathcal{D}_{N_{1}^{*} \rightarrow N_{2}^{*} \pi}\left(M_{1}^{*}, M_{2}^{*}\right)\right|^{2} \mid}\right|_{\text {dransition }}^{\text {form factor }} \ll \text { decay function }
$$

\square Partonic description

$$
\mathcal{N}_{N}^{\pi}(x, z)=e_{u}^{2} u^{N}(x) D_{u}^{\pi}(z)+e_{d}^{2} d^{N}(x) D_{d}^{\pi}(z)
$$

\rightarrow ratios given by quark charges

$$
\frac{\mathcal{N}_{n}^{\pi^{+}}}{\mathcal{N}_{p}^{\pi^{-}}}=\frac{\mathcal{N}_{p}^{\pi^{+}}}{\mathcal{N}_{n}^{\pi^{-}}}=\frac{e_{u}^{2}}{e_{d}^{2}}=4
$$

\square Hadronic description

\rightarrow magnetic interaction operator for $\gamma N \rightarrow N_{1}^{*}$

$$
\sum_{i} e_{i} \sigma_{i}^{+}
$$

\rightarrow pion emission operator for $N_{1}^{*} \rightarrow N_{2}^{*} \pi^{ \pm}$

$$
\sum_{i} \tau_{i}^{\mp} \sigma_{z i}
$$

\square Relative probabilities \mathcal{N}_{N}^{π} in $\mathrm{SU}(6)$ symmetric quark model (summed over N_{1}^{*})

	N_{2}^{*}					
	${ }^{2} 8,56{ }^{+}$	${ }^{4} 10,56{ }^{+}$	${ }^{2} 8,70^{-}$	${ }^{4} 8,70^{-}$	${ }^{2} 10,70^{-}$	sum spin-averaged
$\gamma p \rightarrow \pi^{+} N_{2}^{*}$	100 (100)	$32(-16)$	64 (64)	$16(-8)$	4 (4)	$2 1 6 \longdiv { (1 4 4) }$
$\gamma p \rightarrow \pi^{-} N_{2}^{*}$	0 (0)	24 (-12)	0 (0)	0 (0)	3 (3)	$27(-9)$ spin-dependent
$\gamma n \rightarrow \pi^{+} N_{2}^{*}$	0 (0)	$96(-48)$	0 (0)	0 (0)	12 (12)	$108(-36)$
$\gamma n \rightarrow \pi^{-} N_{2}^{*}$	25 (25)	$8(-4)$	16 (16)	$4(-2)$	1 (1)	54 (36)

Close, WM, PRC 79, 055202 (2009)

- π^{-} / π^{+}ratios for p and n targets (summing over N_{2}^{*})
- Consistent with parton model in SU(6) limit, $d / u=1 / 2$
\square For spin-dependent ratios ($e \& N$ longitudinally polarized)

$$
\begin{aligned}
\frac{\Delta \mathcal{N}_{p}^{\pi^{-}}}{\Delta \mathcal{N}_{p}^{\pi^{+}}}=-\frac{1}{16}, & \frac{\Delta \mathcal{N}_{n}^{\pi^{-}}}{\Delta \mathcal{N}_{n}^{\pi^{+}}}=-1 \\
\frac{\Delta \mathcal{N}_{p}^{\pi^{+}}}{\mathcal{N}_{p}^{\pi^{+}}}=\frac{2}{3}, & \frac{\Delta \mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{p}^{\pi^{-}}}=-\frac{1}{3} \\
\frac{\Delta \mathcal{N}_{n}^{\pi^{+}}}{\mathcal{N}_{n}^{\pi^{+}}}=-\frac{1}{3}, & \frac{\Delta \mathcal{N}_{n}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{-}}}=\frac{2}{3}
\end{aligned}
$$

\square Consistent with parton model ratios

$$
\Delta u / u=2 / 3, \quad \Delta d / d=-1 / 3, \quad \Delta d / \Delta u=-1 / 4
$$

\square Inclusive results recovered by summing over $\pi^{+} \& \pi^{-}$

$$
\begin{gathered}
\frac{\mathcal{N}_{n}^{\pi^{+}+\pi^{-}}}{\mathcal{N}_{p}^{\pi^{+}+\pi^{-}}}=\frac{F_{1}^{n}}{F_{1}^{p}}=\frac{2}{3} \\
\frac{\Delta \mathcal{N}_{n}^{\pi^{++\pi-}}}{\mathcal{N}_{p}^{+++\pi^{-}}}=\frac{g_{1}^{p}}{F_{1}^{p}}=\frac{5}{9}, \quad \frac{\Delta \mathcal{N}_{\pi^{+}+\pi^{-}}^{\mathcal{N}_{n}^{n^{+}+\pi^{-}}}=\frac{g_{1}^{n}}{F_{1}^{n}}=0}{}=0
\end{gathered}
$$

$\square \mathrm{SU}(6)$ symmetry may be valid at $x \sim 1 / 3$, but is (badly) broken at large x

- Color-magnetic interaction
\rightarrow suppression of transitions to states with $S=3 / 2$

$$
\frac{\mathcal{N}_{B}^{\pi^{-}}}{\mathcal{N}_{1}^{\pi^{+}}}=\frac{1}{56}, \quad \frac{N_{n}^{\pi^{-}}}{\mathcal{N}_{n}^{+{ }^{+}}}=\frac{7}{2}
$$

\rightarrow consistent with $d / u=1 / 14$ at parton level
\square Scalar diquark dominance
\rightarrow suppression of symmetric (λ) component of wfn.

$$
\frac{N_{B}^{\pi^{-}}}{\mathcal{N}_{B}^{+}}=0, \quad \frac{N_{n}^{\pi^{+}}}{\mathcal{N}_{n}^{\pi^{\pi}}}=0, \quad \frac{N_{n}^{\pi^{-}}}{\mathcal{N}_{B}^{\pi^{+}}}=\frac{1}{4}
$$

\rightarrow consistent with $d / u=0$ at parton level
$\square \mathrm{SU}(6)$ symmetry may be valid at $x \sim 1 / 3$, but is (badly) broken at large x
\square Helicity conservation
\rightarrow suppression of helicity-3/2 amplitude

$$
\frac{\mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{p}^{\pi^{+}}}=\frac{1}{20}, \quad \frac{\mathcal{N}_{n}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{+}}}=\frac{5}{4}, \quad \frac{\mathcal{N}_{n}^{\pi^{+}}}{\mathcal{N}_{p}^{\pi^{+}}}=\frac{\mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{-}}}=\frac{1}{5}
$$

\rightarrow consistent with $d / u=1 / 5$ at parton level
$\square \mathrm{SU}(6)$ symmetry may be valid at $x \sim 1 / 3$, but is (badly) broken at large x
\square Helicity conservation
\rightarrow suppression of helicity-3/2 amplitude

$$
\frac{\mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{p}^{\pi^{+}}}=\frac{1}{20}, \quad \frac{\mathcal{N}_{n}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{+}}}=\frac{5}{4}, \quad \frac{\mathcal{N}_{n}^{\pi^{+}}}{\mathcal{N}_{p}^{\pi^{+}}}=\frac{\mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{-}}}=\frac{1}{5}
$$

\rightarrow consistent with $d / u=1 / 5$ at parton level
\Longrightarrow All three scenarios consistent with duality!

\square Comparison with data (JLab Hall C)

	N_{2}^{*}					
	${ }^{2} 8,56{ }^{+}$	${ }^{4} 10,56{ }^{+}$	${ }^{2} 8,70^{-}$	${ }^{4} 8,70{ }^{-}$	${ }^{2} 10,70^{-}$	sum
$\gamma p \rightarrow \pi^{+} N_{2}$	100 (100)	$32(-16)$	64 (64)	$16(-8)$	4 (4)	216 (144)
$\gamma p \rightarrow \pi^{-} N_{2}$	0 (0)	$24(-12)$	0 (0)	0 (0)	3 (3)	$27(-9)$
$\gamma n \rightarrow \pi^{+} N_{2}$	0 (0)	$96(-48)$	0 (0)	0 (0)	12 (12)	$108(-36)$
$\gamma n \rightarrow \pi^{-} N_{2}^{*}$	25 (25)	$8(-4)$	16 (16)	$4(-2)$	1 (1)	54 (36)

\square Comparison with data (JLab Hall C)

\square More quantitative comparison requires secondary fragmentation

$$
\frac{\mathcal{N}_{d}^{\pi^{+}}}{\mathcal{N}_{d}^{\pi^{-}}}=\frac{4+R}{4 R+1} \quad \begin{gathered}
\text { (} \\
\\
\\
\\
\\
\begin{array}{c}
D_{d}^{\pi^{+}}=D_{u}^{\pi^{-}} \\
\text {"unfavored" }
\end{array} \\
\begin{array}{c}
D_{u}^{\pi^{+}}=D_{d}^{\pi^{-}} \\
\text {"favored" } \\
z \rightarrow 1
\end{array}
\end{gathered}
$$

\square Comparison with data (JLab Hall C)

\square More quantitative comparison requires secondary fragmentation
\square Target \& (produced) hadron mass corrections recently computed for first time

Accardi, Hobbs, WM
JHEP 0911,084 (2009)
(\rightarrow talk of Accardi)

Summary

- Remarkable confirmation of quark-hadron duality in proton and neutron structure functions
\rightarrow duality violating higher twists $\sim 10-15 \%$ in few -GeV range
\rightarrow duality is not due to accidental cancellations of quark charges
\square Progress in deconstructing local duality
\rightarrow evolution of truncated moments in QCD
\rightarrow insight from quark models into how resonance cancellations may arise in nature
\square First glimpses of duality in semi-inclusive pion production
\rightarrow understanding degree to which duality "works" would greatly aid extraction of nucleon's partonic structure

The End

